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Abstract

Single crystals of gallium–aluminum–antimonide are solidified from a solution of molten gallium–antimonide and aluminum–antimo-
nide. Electromagnetic stirring can be induced in the melt by applying a weak electric field together with a weak axial magnetic field. This
paper presents a numerical model which uses a Chebyshev spectral collocation method with a second-order implicit time integration
scheme with Gauss–Lobatto collocation points. This investigation models the unsteady motion and solute transport during vertical gra-
dient freezing by submerged heater growth with electromagnetic stirring. The radial homogeneity in the crystal improves as the solute’s
concentration increases.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Single crystals of alloyed compound semiconductors
such as gallium–aluminum–antimonide (GaAlSb) are extre-
mely important materials because they serve as the basis of
devices for long wavelength infrared (LWIR) and very long
wavelength infrared (VLWIR) space-based imaging appli-
cations and are strong candidates for hyperspectral imaging
applications. In addition, alloyed GaAlSb crystals with
wider bandgaps and higher electrical resistivity for large
circuits of terahertz devices must have compositional uni-
formity. Gallium–aluminum–antimonide crystals can be
grown from a solution or melt by the liquid-encapsulated
Czochralski (LEC) process or by the vertical gradient freeze
(VGF) process. The LEC process is a top-seeded growth
method which has distinct advantages because the crystal
is viewed directly during growth and because there is no
container in contact with the crystal. However, short-range
compositional uniformity can be problematic due to buoy-
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ancy-driven convection in the melt, which randomly
changes the composition of the melt in the boundary layer
at the growth interface [1]. In addition, long-range crystal
composition generally changes due to a changing melt com-
position for alloys with segregation coefficients not equal to
unity [2]. Relatively good long-range compositional unifor-
mity was achieved for a non-stoichiometric Sb-rich melt by
the LEC process by Ohmori et al. [3]. However, only 25% of
the melt volume was solidified because the continual
increase of antimony in the melt as crystal growth
progressed eventually caused the crystal–melt interface to
breakdown due to constitutional supercooling. In the
early-90s, Ostrogorsky [4] introduced a modification of
the bottom-seeded VGF process in which a submerged hea-
ter separates the melt into two zones, namely, a lower melt
and an upper melt. As crystal growth progresses, the crystal
solidifies while the submerged heater is slowly raised in
order to maintain a constant lower melt depth. The crystal
is solidified from a solution of molten gallium–antimonide
(GaSb) and aluminum–antimonide (AlSb). Unfortunately,
there can be severe long-range axial segregation in the crys-
tal if the process does not have a way to replenish the lower
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Nomenclature

An coefficient in the separation-of-variables solu-
tion for electric potential

b dimensionless depth of the lower melt
B magnetic flux density
cp specific heat of the melt
C dimensionless concentration of the solute in the

melt
C* concentration or mole fraction of solute in the

melt
Co mole fraction of aluminum–antimonide of re-

plenished fluid from the upper melt
Cs dimensionless concentration in the crystal
D diffusion coefficient for the solute in the molten

semiconductor
g gravitational acceleration
Gr thermal Grashof number
GrC compositional or solutal Grashof number
h dimensionless length of the crystal
I total electric current
J0 Bessel function of the first kind and zeroth order
J1 Bessel function of the first kind and first order
Jc characteristic electric current density
j dimensionless electric current density
k thermal conductivity of the melt
ks segregation coefficient for aluminum–anti-

monide in gallium–antimonide
n summation index
N interaction parameter
n̂ outward unit normal vector
p dimensionless pressure
Peg growth Péclet number
Pem species transport Péclet number
Pr Prandtl number
r dimensionless radial coordinate in the melt
ro radial position for estimation of the characteris-

tic electric current density
r̂ unit vector in the radial direction for the cylin-

drical coordinate system
R crystal’s radius or outer electrode’s inner radius
Re Reynolds number
Rem magnetic Reynolds number
t dimensionless time
T dimensionless temperature in the melt
T* temperature in the melt
Tc freezing temperature of pure gallium–anti-

monide
Th uniform and constant temperature of the sub-

merged heater’s surface
T �m melting temperature

Tm dimensionless melting temperature
Uc characteristic velocity of the melt
Ug growth rate or velocity of the crystal–melt inter-

face
v dimensionless velocity in the melt
vr dimensionless radial velocity in the melt
vh dimensionless azimuthal velocity in the melt
vz dimensionless axial velocity in the melt
z dimensionless axial coordinate in the melt
ẑ unit vector in the axial direction for the cylindri-

cal coordinate system

Greek symbols

(DC)o characteristic mole fraction variation
(DT)o difference between the heater’s surface tempera-

ture and the melting temperature of pure gal-
lium–antimonide

a dimensionless growth rate or velocity of the
crystal–melt interface

bC compositional coefficient of volumetric expan-
sion

bT thermal coefficient of volumetric expansion
/ dimensionless electric potential
Uo dimensionless uniform and constant electric

potential of the center electrode
ce dimensionless radius of the center electrode
ch dimensionless radius of the submerged fused-

silica heater housing
C difference between the solute concentration at

the periphery and at the centerline for the crystal
which solidified after steady-state transport has
been achieved

j1 constant in velocity profile for the axial gap flow
j2 constant in velocity profile for the axial gap flow
kn eigenvalues of the Bessel function of the first

kind and zeroth order
K buoyancy ratio
l dynamic viscosity of the melt
lp magnetic permeability of the melt
p 3.14159 radians
h dimensionless azimuthal coordinate in the melt
ĥ unit vector in the azimuthal direction for the

cylindrical coordinate system
q density of the melt
qo density of the melt at the melting temperature
r electrical conductivity of the melt
w dimensionless Stokes streamfunction in the melt
f dimensionless rescaled axial coordinate in the

melt
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melt with a composition that offsets the rejection of species
along the crystal–melt interface [5,6]. Since the rejection of
gallium–antimonide along the solidification front leaves the
melt more rich in GaSb, the lower melt is continuously
replenished with material from the upper melt which has
the alloy composition that is desired for the grown crystal.



Fig. 1. VGF process using submerged heater growth with a uniform,
steady, axial magnetic field ẑ and with a steady radial electric current
where coordinates are normalized by the crystal’s radius.
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Ostrogorsky and Müller [7] have shown that this modified
bottom-seeded VGF method produces crystals which exhi-
bit much lower defect densities and much more composi-
tional uniformity than crystals grown by the LEC process.
Ma et al. [8] and Wang et al. [9] demonstrated that this
VGF method using submerged heater growth is an extre-
mely promising method for producing doped crystals with
axially uniform composition and relatively good radial
homogeneity.

Since molten gallium–antimonide and aluminum–anti-
monide are good electrical conductors, a radial electric cur-
rent in the melt can be used together with an axial magnetic
field in order to electromagnetically stir the melt and control
the species distribution in the semiconductor crystal, which
depends on the convective and diffusive transport of the
species in the melt. In the laboratory, we have demonstrated
that a radial electric current in the presence of a steady axial
magnetic field can produce a significant stirring rate in a gal-
lium–antimonide melt which has a 50 mm diameter and
1 cm depth [10]. Some of the advantages of electromagnetic
(EM) stirring for bottom-seeded crystal growth are
enhancement of the radial compositional uniformity, reduc-
tion of thermal stresses, minimization of defect densities,
and the ability to grow at faster rates. The large number
of adjustable crystal growth parameters and the larger num-
ber of ways to combine them make process optimization
through empirical trial-and-error extremely tedious. There-
fore, models that predict the distribution of alloy compo-
nents in the melt are very useful for optimizing the
complex growth process.

In a previous investigation [8], we modelled the effects of
applying weak magnetic and electric fields on the dopant
transport during the VGF process using submerged heater
growth. We provided predictions of the steady-state
three-dimensional axisymmetric melt motion due to ther-
mally driven buoyant convection and electromagnetic
stirring and then coupled transient species transport of a
dopant for the entire period of time needed to grow a crys-
tal. We found that both the radial and axial compositional
homogeneity in the doped crystal improved as the strength
of the electromagnetic (EM) stirring increased. Holmes
et al. [11] found that rotation of the heater further
improves this homogeneity. For the growth of alloyed crys-
tals, such as gallium–aluminum–antimonide (GaAlSb), the
crystal is solidified from a solution of gallium–antimonide
(GaSb) and aluminum–antimonide (AlSb) in which the
concentration of the solute is not small. Gallium–antimo-
nide has a density of 6030 kg/m3 while aluminum–antimo-
nide has a density of 4720 kg/m3, so that the heavier
gallium–antimonide sinks while the lighter aluminum–anti-
monide rises. This density difference drives an additional
flow, i.e., compositionally driven buoyant convection, or
solutal convection. In the present paper, we present a
numerical model for the coupled unsteady equations gov-
erning the melt motion and the transport of aluminum–
antimonide in a gallium–antimonide solution for this
process.
2. Problem formulation

This paper treats the unsteady, axisymmetric transport
of aluminum–antimonide in a gallium–aluminum–antimo-
nide melt during the vertical gradient freeze crystal growth
using a submerged heater with an externally applied, uni-
form, steady, axial magnetic field Bẑ combined with a
radial electric current. Here, B is the magnetic flux density,
while r̂; ĥ and ẑ are the unit vectors for the cylindrical
coordinate system. Our dimensionless problem is sketched
in Fig. 1. The coordinates and lengths are normalized by
the outer electrode’s inner (or center) radius R, which is
equal to the crystal radius, so that ce is the dimensionless
radius of the center electrode, ch is the dimensionless radius
of the submerged fused-silica heater housing, and b is the
dimensionless depth of the lower melt. A single crystal
seed, which initiates solidification, lies at the bottom of
the fused-silica crucible. A graphite disc and a boron
nitride disc lie below the crucible. These discs are cooled
by a water-cooled hearth which removes heat along the
bottom of the crucible. As the crystal at z = at solidifies,
the crystal–melt interface moves axially upward at the
dimensionless rate a = Ug/Uc, where Ug is the constant
growth rate and Uc is the characteristic velocity of the melt
while z is normalized by the crystal’s radius R and t is time
normalized by R/Uc. The lower melt is replenished with
liquid supplied from the upper melt through a small annu-
lar gap between the submerged heater housing and the
outer electrode. The submerged heater at z = at + b moves
upward at the same rate so that the depth of the melt is con-
stant throughout growth. A long small-diameter cylindrical
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graphite electrode through the center of the submerged
heater carries a constant axially downward DC electric cur-
rent. The electrical conductivity of the graphite electrodes
is far larger than that of the fused-silica submerged heater
housing and also larger than that of the solid alloy crystal.

A magnetic field is applied with a copper coil outside the
heater insulation, while an electric current is applied
through the electrode so that the electromagnetic (EM)
body force created by this electric current is balanced by
the inertial force. This balance gives a characteristic
velocity

U c ¼
BJ cR
qo

� �1=2

; ð1Þ

where R is the inner radius of the outer electrode or the ra-
dius of the crystal, and qo is the density of the molten semi-
conductor at the melting temperature Tm. Here, the
characteristic electric current density is Jc = I/(2probR),
where ro is a radial position that we use to provide an
approximate estimate of the radial electric current density,
and I is the externally applied radial electric current.
For example, for a crystal grown with R = 25 mm, bR =
1 mm and I = 4 A, our estimation of Jc is 6366.2 A/m2 with
ro = 1 cm.

The electric current in the melt produces an induced
magnetic field which is superimposed upon the applied
magnetic field produced by the external magnet. The char-
acteristic ratio of the induced to applied magnetic field
strengths is the magnetic Reynolds number, Rem =
lprUcR, where lp is the magnetic permeability of the melt
and r is the electrical conductivity of the melt. For all crys-
tal growth processes, Rem� 1 and the additional magnetic
fields produced by the electric currents in the melt are
negligible.

Ohm’s law is

j ¼ �r/þ Nv� ẑ; ð2Þ

where j is the electric current density normalized by Jc, / is
the electric potential normalized by JcR/r, and v ¼ vrr̂þ
vhĥþ vzẑ is the melt velocity normalized by Uc. Here, the
ratio of the induced electric field v� ẑ to the static electric
field $/ is the interaction parameter, N = rB2R/qoUc. For
the present process, N = 5.78 · 10�7 so that the induced
electric field is negligible. Wang et al. [12] modelled the
transport for non-zero values of N. For our axisymmetric
problem, there is no azimuthal flow of electric current,
and the electric potential is governed by

r2/ ¼ 0. ð3Þ

We treat the electrodes as perfect conductors which carry a
uniform electric potential, so that the boundary conditions
are

/ ¼ 0; at r ¼ 1 for � 1 6 f 6 þ1; ð4aÞ
/ ¼ Uo; at f ¼ þ1 for 0 6 r 6 ce. ð4bÞ
Here, f = �1 + 2(z � at)/b is a rescaled axial coordinate so
that �1 6 f 6 +1. The fused-silica heater, the annular gap
between the heater and the outer electrode, and the crystal–
melt interface are treated as electrical insulators, so that
n̂ � r/ ¼ 0 along each of these boundaries, where n̂ is the
outward unit normal vector.

The electric potential is given by a separation-of-vari-
ables solution,

/ ¼
X1
n¼1

AnUoJ oðknrÞ
cosh knb

2
ðfþ 1Þ

� �
coshðknbÞ ; ð5Þ

where Jo is the Bessel function of the first kind and zeroth
order and kn are the eigenvalues of Jo. Based on our choice
for the characteristic electric current density Jc, the integral
of the radial electric current over the melt depth must equal
b at r = ro, so that

Uo ¼ b
X1
n¼1

AnJ 1ðknroÞ
sinhðknbÞ
coshðknbÞ

" #�1

; ð6Þ

where J1 is the Bessel function of the first kind and first or-
der. A Galerkin method is implemented to avoid a Gibb’s
phenomena associated with the discontinuous boundary
conditions along f = +1. The electric current originates
from the center electrode and flows radially outward and
axially downward. For ce = 0.1905 and b = 0.4, Uo = 1.353.

We assume that the temperature differences and compo-
sitional variations are sufficiently small so that all of the
thermophysical properties of the melt can be considered
uniform and constant except for the density in the gravita-
tional body force term of the Navier–Stokes equation. In
this Boussinesq approximation, the characteristic tempera-
ture difference (DT)o = (Th � Tc) and characteristic mole
fraction difference (DC)o are assumed to be sufficiently
small that melt’s density is a linear function of temperature
and concentration, given by

q ¼ qo½1� bTðT � � T cÞ � bCðC� � CoÞ�; ð7Þ
and that bT(DT)o� 1 and bC(DC)o� 1 where bT and bC

are the thermal and the compositional coefficients of volu-
metric expansion, respectively. In Eq. (7), T* is the temper-
ature in the melt, Tc is the freezing temperature of pure
gallium–antimonide, C* is the mole fraction of aluminum–
antimonide in the melt, and Co is the constant mole fraction
of aluminum–antimonide in the upper melt which is contin-
uously fed to the lower melt through the gap at f = +1.

The equations governing the axisymmetric melt velocity,
temperature, and mole fraction are

ov

ot
þ ðv � rÞv ¼ �rp þ 1

Re2
½GrT þ GrCðC � 1Þ�ẑ

þ o/
or

ĥþ 1

Re
r2v; ð8aÞ

r � v ¼ 0; ð8bÞ

PrRe
oT
ot
þ ðv � rÞT

� �
¼ r2T þ vj2; ð8cÞ
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Pem

oC
ot
þ ðv � rÞC

� �
¼ r2C; ð8dÞ

vr ¼
1

r
ow
oz
; ð8eÞ

vz ¼ �
1

r
ow
or
; ð8fÞ

where p is the deviation of the dimensional pressure from
the hydrostatic pressure for a uniform density normalized
by qoU 2

c , T is the deviation of the dimensional temperature
from the melting temperature of pure gallium–antimonide,
Tc = 710 �C, normalized by (DT)o, and C is the mole frac-
tion of aluminum–antimonide in the melt normalized by
Co. In Eq. (8a), the ratio of the thermal buoyancy force
to the electromagnetic (EM) body force is Gr/Re2, where
Gr ¼ q2

ogbTðT h � T cÞR3=l2 is the thermal Grashof number
and Re = qoUcR/l is the Reynolds number. Here,
g = 9.81 m2/s and l is the dynamic viscosity of the melt.
The solutal or compositional Grashof number GrC ¼
q2

ogbCCoR3=l2 is equal to KGr with K = bCCo/bT(DT)o,
which was used by Farrell and Ma [1] and referred to as
the buoyancy ratio by Bennacer and Gobin [13]. In Eq.
(8c), the Prandtl number is Pr = lcp/k, where cp and k

are the specific heat and thermal conductivity of the melt,
respectively. In Eq. (8c), the characteristic ratio of Joule
heating to conductive heat transfer is v ¼ R2J 2

c=
½rkðT h � T mÞ�. For the present process, v = 7.4 · 10�5 so
that Joule heating is negligible. In Eq. (8d), the species
transport Péclet number is Pem = UcR/D, where D is the
diffusion coefficient for aluminum–antimonide in the melt.
In Eqs. (8e) and (8f), we introduce a Stokes streamfunction
w for the radial and axial velocities for the meridional melt
motion which identically satisfies continuity (8b) for our
axisymmetric melt motion.

We use a reference frame moving with the fused-silica
heater and crystal–melt interface. Therefore, the no-slip
and no-penetration conditions on the surface of the outer
electrode are

vr ¼ vh ¼ 0; at r ¼ 1 for � 1 6 f 6 þ1; ð9a; bÞ
vz ¼ �a; at r ¼ 1 for � 1 6 f 6 þ1. ð9cÞ

The boundary conditions on the crystal–melt interface and
on the surfaces of the center electrode and fused-silica hea-
ter are

vr ¼ vh ¼ 0; at f ¼ �1 for 0 6 r 6 1; ð10a; bÞ
vz ¼ �a; at f ¼ �1 for 0 6 r 6 1; ð10cÞ
vr ¼ vh ¼ 0; at f ¼ þ1 for 0 6 r 6 1; ð10d; eÞ
vz ¼ 0; at f ¼ þ1 for 0 6 r 6 ch. ð10fÞ

Assuming that the density of the crystal and melt are the
same, the gap between the heater and the outer electrode
replenishes the solidifying melt at a volumetric flowrate
pa, so that we assume a simple velocity profile [8],

vz ¼ a½�1þ j1ð1� rÞ þ j2ð1� r2Þ�; at f ¼ þ1

for ch 6 r 6 1; ð11Þ
where j1 ¼ 3ð1þ c2
hÞ=ð1� chÞ

3 and j2 ¼ �2ð1þ ch þ c2
hÞ=

ð1� chÞ
3ð1þ chÞ.

The power provided by the submerged heater above the
lower melt and the heaters to the periphery of the crucible
is adjusted so that the crystal–melt interface is nearly pla-
nar, and the melt adjacent to the submerged heater is held
at a uniform and constant temperature Th. Therefore, we
apply the thermal conditions

T ¼ 1; at f ¼ þ1 for 0 6 r 6 1; ð12aÞ
oT
or
¼ 0; at r ¼ 1 for � 1 6 f 6 þ1. ð12bÞ

Along the crystal–melt interface,

T ¼ T m; at f ¼ �1 for 0 6 r 6 1; ð13Þ
where Tm is the deviation of the dimensional melting tem-
perature T �m from Tc normalized by (Th � Tc). Here,

T �mðC�Þ ¼ 710þ 855C� � 1111C�2 þ 1060C�3 � 450C�4;

ð14Þ
where T �m is in �C. Eq. (14) is an estimation of the melting
temperature as a function of mole fraction of aluminum–
antimonide C* which is based upon the experimental data
for the liquidus curve in the pseudo-binary phase diagram
for gallium–aluminum–antimonide [14].

The segregation coefficient ks(C*) for aluminum–anti-
monide (AlSb) in gallium–antimonide (GaSb) is greater
than unity, so that the gallium–antimonide is rejected along
the crystal–melt interface producing a GaSb-rich region
adjacent to the crystal–melt interface. A curve fit based
on the experimental data presented by Osamura et al.
[14] gives a relationship

ksðC�Þ ¼ 7:3� 53:9C� þ 253:7C�2 � 672:3C�3 þ 979:45C�4

� 727:88C�5 þ 214:7C�6. ð15Þ

Before solidification begins, the melt contains initially pure
gallium–antimonide, so that C(r,f, t = 0) = 0. In order to
compensate for the rejection of gallium–antimonide along
the crystal–melt interface, the lower melt is replenished
with liquid having mole fraction Co, so that the boundary
condition along the gap between the heater and the outer
electrode is

C ¼ 1; at f ¼ þ1 for ch 6 r 6 1. ð16Þ

The boundary condition along the crystal–melt interface is

2

b
oC
of
¼ Pegðks � 1ÞC; at f ¼ �1 for 0 6 r 6 1; ð17Þ

where Peg = UgR/D = aPem is the growth Péclet number.
The conditions along the impermeable surfaces of the cen-
ter electrode, outer electrode and fused-silica heater are
n̂ � rC ¼ 0.

We use a Chebyshev spectral collocation method with a
second-order implicit time integration scheme to solve Eqs.
(8a)–(8d) with Gauss–Lobatto collocation points in r and
f. We use a sufficient number of collocation points in order



Fig. 2. Contours for the steady-state melt motion for doped growth
for Re = 30: (a) temperature T(r,f), (b) azimuthal velocity vh(r,f),
(c) meridional streamfunction w(r,f).
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to resolve velocity, temperature and concentration gradi-
ents near the boundaries. We integrate from t = 0 to a t

which is slightly less than h/a, where h is the dimensionless
length of the crystal. We use a large enough number of time
steps such that the results do not change by increasing the
number of time steps. The calculations were performed on
the Cray X1 and IBM pSeries 690. For Co = 0.005, we used
96 collocation points in the radial direction, 31 collocation
points in the axial direction, and 16,000 time steps, and the
simulation took 12 min to complete one time step. When
we increased the number of collocation points in radial
direction to 201, the maximum value of the streamfunction
changed by 0.06% and the maximum value of the concen-
tration changed by 0.019% at t = 0.1665. When we
increased the number of collocation points in axial direc-
tion to 61, the maximum value of streamfunction changed
by 0.0001% and the maximum value of the concentration
changed by 0.0001% at t = 0.1665. When we increased
the number of time steps to 24,000, the maximum value
of streamfunction changed by 0.9% and the maximum
value of the concentration changed by 0.0002% at
t = 0.1665.

Assuming that the species do not diffuse in the solid
crystal and that the density of the solid and liquid are the
same, the mole fraction of aluminum–antimonide normal-
ized by Co in the crystal Cs(r,z) is given by Cs(r,z) =
ksC(r,f = �1, t = z/a). Future research will compare model
predictions to experimental measurements for the concen-
tration in the crystal.

3. Results

We present results for ce = 0.1905, ch = 0.8, h = 3.2,
Pr = 0.0442, b = 0.4, and Ug = 2 mm/h for which
Peg = 0.6944 and Gr = 2 · 106 with (Th � Tc) = 20 K. We
investigate the effects of increasing the value of Co on the
transport in the melt and the alloy segregation in the crystal.
The parameters as a function of Uc and Co are Re =
6.526 · 104Uc, Pem = 1.25 · 106Uc, GrC = 2.269 · 108Co,
a ¼ 5:556� 10�7U�1

c , and the dimensionless time to grow
a crystal is h/a = 5.76 · 106Uc, where Uc is in m/s.

The purpose of the present study is to investigate the
effects of increasing the initial concentration Co on the trans-
port in the melt and on the compositional distribution in the
crystal. We present results for Re = 30, for which Uc =
0.0004597 m/s, Pem = 574.63, a = 0.0012085, and h/a =
2647.9. The only remaining parameter is GrC, which is a
function of Co.

We begin by presenting results for doped growth in
which the concentration of the dopant or solute is so small
that the melt is considered dilute. For doped growth, we
assume that the concentrations differences are not large
enough to drive solutal convection so that the melt motion
is independent of the dopant transport and steady [8]. Thus
the melt motion is governed by Eqs. (8a)–(8c) with GrC = 0
and without the time derivatives. We solve Eq. (8d) for the
dopant concentration in the melt with vr and vz given by the
solution to Eqs. (8a)–(8c). We present contours for the tem-
perature T, the azimuthal velocity vh, and the meridional
streamfunction w, in Fig. 2a–c, respectively, for Re = 30.
In Fig. 2a, the isotherms are horizontal so that there is
no radial temperature gradient and no thermally driven
buoyant convection. The electromagnetic (EM) stirring
provides an azimuthal body force which drives an azi-
muthal melt motion presented in Fig. 2b, where the mini-
mum value of vh is �0.5170. The meridional melt motion
in Fig. 2c is dominated by the motion of the heater and
the replenished flow, so that the melt adjacent to the
periphery of the ampoule flows axially downward and then
either solidifies or flows radially inward along the crystal–
melt interface. Viscous shearing causes this flow to drive
a clockwise circulation adjacent to the centerline. The
minimum and maximum values of the meridional stream-
function are wmin = �0.0003089 and wmax = 0.0006044,
respectively. In Fig. 3a and b, we present the constant-
concentration curves for the concentration in the melt at
t = 6.6196 and at t = 357.46, respectively. The concentra-
tion of the replenished fluid is C = 1 along the gap for
ch 6 r 6 1 at f = +1 for all time, as reflected in Fig. 3a.



Fig. 3. Constant-concentration curves for doped growth for Re = 30 in
the melt C(r,f, t): (a) C(r,f, t = 6.6197), (b) C(r,f, t = 357.46).

Fig. 4. Constant-concentration curves in the crystal Cs(r,z) for doped
growth and Re = 30.

Fig. 5. Contours in the melt for Re = 30 and Co = 0.000005 at t = 321.1:
(a) meridional streamfunction w(r,f, t = 321.1), (b) melt concentration
C(r,f, t = 321.1).
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The crystal absorbs aluminum–antimonide during solidifi-
cation because ks > 1 so that the concentration is C < 1
in a significant fraction of the melt. The melt adjacent to
the centerline at r = 0 remains at C = 0 for this early stage
of growth. At t = 357.46 when 13.5% of the crystal has
grown, the dopant transport has reached a steady state.
The constant-concentration curves at this time are pre-
sented in Fig. 3b in which the minimum value of the con-
centration is C = 0.1713. After this time, the dopant
distribution in the melt remains the same as shown in
Fig. 3b so that the remainder of the crystal solidifies with
the same radial distribution. The constant-concentration
curves in the crystal are presented in Fig. 4. The bottom
of the crystal, which solidified before the dopant transport
reached steady state, reflects an axial variation in Cs. The
remainder of the crystal which solidified after steady-state
dopant transport has been achieved is axially uniform with
the same radial distribution. This corresponds to the top
86.5% of the crystal. We define the difference between the
solute concentration at the periphery and at the center
for the crystal which solidified after steady-state trans-
port has been achieved, C = Cs(1,3.199) � Cs(0,3.199).
For the doped crystal, this difference is C = Cs(1,3.199) �
Cs(0, 3.199) = 1.24475.

We present results for Co = 0.000005 for which GrC =
1.13 · 103. At early stages of growth, the meridional melt
motion resembles Fig. 2c except for a small counterclock-
wise circulation near r = 1. The concentration differences
in the melt are large enough to drive compositionally dri-
ven or solutal convection, which is reflected in the meridi-
onal melt motion. We present contours of the meridional
streamfunction w and the concentration C after steady-
state transport has been achieved in the melt at t = 321.1
when 12.125% of the crystal has grown in Fig. 5a and b,
respectively. At this time, the azimuthal velocity vh nearly
resembles the contours in Fig. 2b for doped growth but
the minimum value of vh has increased to �0.5137. In
Fig. 5a, the minimum and maximum values of the meridi-
onal streamfunction are �0.0002348 and 0.0006058,
respectively. The constant-concentration curves in Fig. 5b
show that the concentration of the solute, aluminum–anti-
monide, near r = 1 is larger than the concentration near the
centerline at a given axial position. Because AlSb is lighter
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than GaSb, the solutal convection alone would drive a
meridional circulation in the counterclockwise direction.
This explains the small counterclockwise circulation near
the periphery in Fig. 5a, and explains the increase in the
magnitude of the meridional streamfunction compared
with doped growth in which there is no solutal convection.
The counterclockwise solutal convection cancels some of
the clockwise circulation adjacent to the centerline in
Fig. 5a. The counterclockwise flow due to solutal convec-
tion augments the radially inward flow due to the replen-
ishment in the gap. This causes the melt having higher
solute concentration to convect towards the centerline
along the interface having lower solute concentration at a
faster rate compared with doped growth. This has the effect
of decreasing the concentration difference along the inter-
face compared with doped growth for the equivalent stage
of growth, as reflected in Fig. 5b. In Fig. 5b, the minimum
value of the solute concentration is 0.1828. The addition of
solutal convection increases the mixing of the melt so that
the transport in the melt reaches a steady state at an earlier
stage of growth compared with doped growth. The con-
stant-concentration curves for the solute concentration in
the crystal are presented in Fig. 6. After the transport in
the melt has reached a steady state, the remainder of the
crystal solidifies with the same radial solute distribution.
Therefore the bottom 12.125% of the crystal has an axial
variation and the top 87.875% of the crystal is axially uni-
form. The difference between the solute concentration at
the periphery and at the centerline for the crystal that
has solidified after steady-state transport has been achieved
is C = 1.22947.

We present results for Co = 0.005 for which GrC =
1.13 · 106. With this elevated level of the replenished solute
Fig. 6. Constant-concentration curves in the crystal Cs(r,z) for Re = 30
and Co = 0.000005.
concentration Co, the solutal convection is much stronger
compared with Co = 0.00005. This increased mixing in
the melt causes the melt motion and solute transport to
reach a steady state at an earlier time t = 289.6 when
10.9375% of the crystal has grown. At this time, the azi-
muthal velocity vh nearly resembles the contours in
Fig. 2b for doped growth but the minimum value of vh

has further increased to �0.4923. We present the contours
of the meridional streamfunction w and the solute concen-
tration C in the melt at t = 289.6 in Fig. 7a and b, respec-
tively. The solutal convection has significantly increased
the counterclockwise circulation in Fig. 7a, as reflected
by the w = 0.001 and w = 0.003 contours. In Fig. 7a, the
minimum and maximum values of the meridional stream-
function are �0.0002029 and 0.004162, respectively. The
solutal convection has dramatically decreased the radial
segregation as reflected in Fig. 7b in which most of the
constant-concentration curves are nearly horizontal. In
Fig. 7b, the minimum value of the solute concentration is
0.3496. The top 89.0625% of the crystal solidifies is axially
uniform with the same radial distribution, as shown in
Fig. 8. The difference between the solute concentration at
the periphery and at the centerline for the crystal that
has solidified after steady-state transport has been achieved
is C = 0.01608.

In Fig. 9, we present the radial distribution of the solute
concentration for the crystal which solidified after steady-
state transport has been reached for Co = 0.00025,
Co = 0.001 and Co = 0.005. As the concentration of the
replenished flow through the gap Co increases, the radial
segregation decreases as reflected in the decreasing value
of C. For doped growth corresponding to Co = 0, C =
Fig. 7. Contours in the melt for Re = 30 and Co = 0.005 at t = 289.6:
(a) meridional streamfunction w(r,f, t = 289.6), (b) melt concentration
C(r,f, t = 289.6).



Fig. 8. Constant-concentration curves in the crystal Cs(r,z) for Re = 30
and Co = 0.005.
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1.24475. C decreases as Co increases. That is, C = 1.22947
for Co = 5 · 10�6, C = 0.08030 for Co = 0.00025, C =
0.06245 for Co = 0.001, and C = 0.01608 for Co = 0.005.
The radial and axial segregation in the crystal is summa-
rized in Table 1 for different values of Co.
Table 1
Radial and axial segregation after steady-state transport has been reached

Co C Percentage of crystal
which is axially uniform (%)

0 1.24475 86.50
0.000005 1.22947 87.25
0.00025 0.0803 87.50
0.001 0.06245 88.62
0.005 0.01608 89.06
4. Conclusions

We developed a numerical model for the unsteady trans-
port during the VGF process by submerged heater growth
with a steady axial magnetic field and a steady radial elec-
tric current. We investigated the effects of solute concentra-
tion on the melt motion and species transport in the melt
and on the solute distribution in the crystal. As the solute
concentration in the melt increases, the solutal convection
in the melt becomes stronger which decreases the concen-
tration difference in the melt. Consequently, the radial seg-
regation in the crystal decreases as the solutal convection
increases. Additionally, the increased mixing due to solutal
convection decreases the time that it takes for the transport
in the melt to reach steady state and increases the length of
the crystal that solidifies with axial uniformity.
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